A Survey of Absolute *p*-adic Anabelian Geometry

Shinichi Mochizuki, RIMS http://www.kurims.kyoto-u.ac.jp/~motizuki "Travel and Lectures"

- $\S1.$ Absolute Anabelian Geometry
- §2. Canonical Curves
- §3. Curves with Belyi Maps
- §4. Configuration Spaces
- §5. Further Directions

 $\mathbf{2}$

§1. <u>Absolute Anabelian Geometry</u> Let F_1 , F_2 be fields, with absolute Galois groups G_{F_1} , G_{F_2} ;

 $\phi: G_{F_1} \xrightarrow{\sim} G_{F_2}$

an isomorphism of profinite groups. Then:

QUESTION:

Does ϕ <u>necessarily</u> arise from an isomorphism of fields $F_1 \xrightarrow{\sim} F_2$?

ANSWERS:

· <u>YES</u>, if F_i are <u>number fields</u> (NF), by Neukirch-Uchida (NU).

· <u>NO</u>, if F_i are <u>p-adic local fields</u> (pLF).

• <u>YES</u>, if F_i are <u>pLF</u>, and ϕ preserves the <u>ramification filtration</u>, or, alternatively, the isom. class of the <u>topological Galois module</u> <u>" \mathbb{C}_p "</u> (cf. [\mathbb{Q}_p GC]). Thus, NO/YES for *p*LF is a measure of the extent to which ϕ preserves the respective "<u>*p*-adic Hodge theories</u>" (*p*HT) of the F_i — as if *p*HT is a sort of "<u>holomorphic</u> <u>structure</u>" on an underlying "<u>real analytic/</u> <u>topological manifold</u>" G_{F_i} .

Now let:

 \mathbb{V} be a <u>class of varieties;</u> \mathbb{F} a <u>class of fields</u>.

If
$$V \in \mathbb{V}$$
, $F \in \mathbb{F}$, write:
 $\Pi_V \stackrel{\text{def}}{=} \pi_1(V)$ (étale fund. group);
 $G_F \stackrel{\text{def}}{=} G_F$ (absolute Galois group).

Consider the following assertions:

(<u>rel \mathbb{VFGC} </u>) For $V_i \in \mathbb{V}$ (where i = 1, 2) over $F \in \mathbb{F}$, the natural map

Isom_F(V_1, V_2) \rightarrow OutIsom_{G_F}(Π_{V_1}, Π_{V_2}) is a <u>bijection</u>. (<u>abs \mathbb{VFGC} </u>) For $V_i \in \mathbb{V}$ over $F_i \in \mathbb{F}$ (where i = 1, 2), the natural map

Isom $(V_1, V_2) \rightarrow \text{OutIsom}(\Pi_{V_1}, \Pi_{V_2})$ is a <u>bijection</u>.

When $\mathbb{V} = \text{``hyperbolic curves''}$, write: $p \text{GC} \stackrel{\text{def}}{=} \mathbb{VFGC}$, when $\mathbb{F} = \text{``}p \text{LF''}$; $\text{NFGC} \stackrel{\text{def}}{=} \mathbb{VFGC}$, when $\mathbb{F} = \text{``NF''}$.

Thus, by "YES for NF" (NU), we have: (rel NFGC) \iff (abs NFGC)

By contrast, even though (rel pGC) is <u>known</u> (cf. [pGC]), (abs pGC) is <u>only known in</u> <u>certain special cases</u>, to be discussed in the present survey.

As discussed above, (abs pGC) involves the subtle issue of preserving the "<u>pHT</u>", i.e., the "<u>holomorphic structure</u>", on G_K , for $K/\mathbb{Q}_p < \infty$.

<u>Motivation</u> for (abs pGC): work on ABC Conjecture, in particular,

"Inter-universal Teichmüller Theory" (IUTeich)

(work in progress).

<u>Idea</u>: construct "<u>canonical Teich. lifts</u>" of pLF, NF, i.e.:

scheme theory \longleftrightarrow char. p scheme theory IUTeich lifts \longleftrightarrow p-adic Witt/Teich. lifts

Put another way, trying to construct a sort of

$$``\mathbb{Z}_p \times_{\mathbb{F}_1} \mathbb{Z}_p"$$

where:

<u>one</u> \mathbb{Z}_p is <u>scheme-theoretic</u>, the <u>other</u> \mathbb{Z}_p is <u>Galois-theoretic</u>. Then (abs pGC) arises in developing the theory of the "Galois-theoretic \mathbb{Z}_p ".

§2. <u>Canonical Curves</u>

Let

$$\mathbb{V} \stackrel{\text{def}}{=} \text{``hyperbolic curves''}$$
$$\mathbb{F} \stackrel{\text{def}}{=} \text{``}p\text{LF''}$$

In <u>p-adic Teichmüller theory</u> (cf. Serre-Tate theory; Bers uniformizations over \mathbb{C}), one has a notion of <u>canonical liftings</u> of certain hyperbolic curves over finite fields (equipped with certain auxiliary data) to rings of Witt vectors of the base fields. Thus, we also consider (when $p \geq 3$):

 $\mathbb{V}^{\operatorname{can}} \stackrel{\operatorname{def}}{=}$ "can. lifted hyperbolic curves" $\mathbb{F}^{\operatorname{can}} \stackrel{\operatorname{def}}{=}$ "absolutely unramified *p*LF"

Thus, if we fix the "type (g, r)", then the resulting set of isomorphism classes of \mathbb{V}^{can} is <u>countably infinite</u> and <u>Zariski dense</u> in the moduli stack of hyperbolic curves of type (g, r). In the case of canonical curves, we have a <u>somewhat weaker</u> result than the full "(abs pGC)", which was, in fact, the <u>first result</u> obtained (by the lecturer) in <u>absolute *p*-adic</u> <u>anabelian geometry</u> (cf. [Canon]):

<u>Theorem</u>: Let $X_1, X_2 \in \mathbb{V}$, $\phi: \Pi_{X_1} \xrightarrow{\sim} \Pi_{X_2}$

an isomorphism of profinite groups. Then:

(i) $X_1 \in \mathbb{V}^{\operatorname{can}} \iff X_2 \in \mathbb{V}^{\operatorname{can}}$.

(ii) Suppose that X_1 or X_2 belongs to \mathbb{V}^{can} . Then ϕ induces a <u>functorial isomorphism</u> of the respective <u>log special fibers</u> of X_1, X_2 , which is, moreover, <u>compatible with</u> the canonical deformations of these log special fibers constituted by X_1, X_2 .

§3. <u>Curves with Belyi Maps</u>

Consider the following ("<u>quasi-Belyi-ness</u>") condition on an (affine) <u>hyperbolic curve</u> X over a field F of char. 0:

(QB) There exist a <u>dominant morphism</u> $Y \to (\mathbb{P}^1 \setminus 01\infty)_F,$

where Y is a hyperbolic curve, together with a finite étale morphism $Y \to X$.

Also, we consider the condition:

 $(NFQB) \stackrel{\text{def}}{=} (QB) + (X \text{ is } \underline{\text{defined over a } NF}).$

If Z is a proper hyperbolic curve of genus ≥ 2 over F, r > 0, then

 $Z \setminus (\underline{\text{generic}} \ r$ -tuple of points) is <u>not (QB)</u> (A. Tamagawa — cf. [Config]). The first result obtained (by the lecturer) concerning (abs pGC) is the following (cf. [Cusp]):

<u>Theorem A</u>: (abs \mathbb{VFGC}) holds, for

 $\mathbb{V} \stackrel{\text{def}}{=} (\text{NFQB})\text{-curves}, \ \mathbb{F} \stackrel{\text{def}}{=} "pLF".$

Subsequent to this result, A. Tamagawa refined the technique of "applying Belyi maps to prove (abs pGC)" via the following result, which is of independent interest:

<u>Theorem^{*} B</u>: Every <u>Lubin-Tate group</u> appears as a subquotient of the p-adic Tate module of <u>some abelian variety</u> over a NF.

Thm. B allows one to prove the following generalization of Thm. A:

<u>Theorem^{*} C</u>: (abs \mathbb{VFGC}) holds, for $\mathbb{V} \stackrel{\text{def}}{=} (\text{QB})$ -curves, $\mathbb{F} \stackrel{\text{def}}{=} "pLF"$.

* orally communicated, unwritten as of the time of this lecture 10

<u>Remarks</u>:

• Although Thm. A is weaker than Thm. C, the technique of Thm. A is "<u>NF-friendly</u>", hence yields a <u>new proof</u> of (abs NFGC) for (NFQB)-curves that <u>does not rely on NU!</u> This is the <u>first example</u> of a proof of (a certain consequence of) NU that involves an <u>explicit construction</u> of the NF.

• Thm. C is the first version of (abs pGC) that applies to <u>uncountably many</u> curves, as well as to <u>arbitrary multiply-punctured</u> <u>elliptic curves</u>.

• It appears likely (?) that Thm. C may be generalized to a "<u>Hom-version</u>" (i.e., for open homomorphisms, as opposed to isomorphisms, of arith. fund. groups).

§4. Configuration Spaces

Let X be a <u>hyperbolic curve</u>, $n \ge 1$ an integer. Then consider the <u>*n*-th configuration</u> <u>space</u>

 $X \times \ldots \times X \setminus \text{diagonals}$

(where the product is of n copies of X) associated to X.

$$\underline{\text{Theorem}}: \text{ Let } \mathbb{F} \stackrel{\text{def}}{=} ``p \text{LF}";$$

$$\mathbb{V}$$

the class of <u>n-th configuration spaces</u> associated to <u>hyperbolic curves</u> of type

$$(g,r) \neq (0,3); (1,1),$$

where

 $n \ge 3$ if r = 0 (the proper case), $n \ge 2$ if r > 0 (the affine case). Then (abs VFGC) holds. <u>Proof</u>: Combine joint work with A. Tamagawa (cf. [Config]) on the geometry of configuration spaces, with a certain "combinatorial version of the GC" (cf. [CombGC]), and the (abs pGC) applied to the copy of $\mathbb{P}^1 \setminus 01\infty$ "lying inside the boundary of the configuration space" (cf. the assumption on n). \square

Note that this is the <u>first result</u> of absolute p-adic anabelian geometry that applies to <u>arbitrary hyperbolic curves</u>.

§5. <u>Further Directions</u>

Let

$$\mathbb{V} \stackrel{\text{def}}{=} \text{hyperbolic curves},$$

 $\mathbb{F} \stackrel{\text{def}}{=} p \text{LF}.$

If Σ is a <u>set of primes</u>, $X \in \mathbb{V}$, write Π_X^{Σ}

for the max. geometrically pro- Σ quotient of Π_X .

Then earlier this year, the lecturer showed the following:

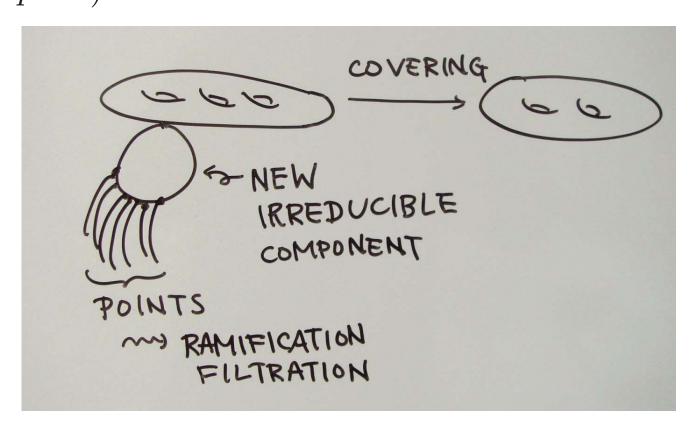
Theorem^{*}: Let
$$X_1, X_2 \in \mathbb{V}$$
,
 $\phi : \Pi_{X_1}^{\Sigma} \xrightarrow{\sim} \Pi_{X_2}^{\Sigma}$

an <u>isomorphism of profinite groups</u>. Suppose that $p, l \in \Sigma$, where $l \neq p$. Then ϕ <u>arises geometrically</u> if and only if ϕ is <u>point-theoretic</u> (i.e., preserves decomposition groups of closed points of X_1, X_2).

* unwritten as of the time of this lecture

<u>Proof</u>: If $X \in \mathbb{V}$ lies over $K \in \mathbb{F}$, then by considering various finite étale coverings of X of order a power of p, one may effect <u>arbitrarily many "blow-ups</u>". Then careful inspection of the collection of closed points contained in the interior of the "<u>new</u> <u>irreducible components</u>" arising from these "blow-ups" shows that such collections of points correspond essentially to, i.e., may be thought of as "geometric realizations" of, various portions of the <u>ramification fil-</u>

tration of G_K . Thus, one concludes via the theory of $[\mathbb{Q}_p GC]$, together with the (rel pGC). \Box



Thus, it remains to show <u>point-theoreticity</u>. It appears likely that this should be possible if one can answer the following question in the affirmative:

<u>QUESTION</u>: In the notation of the Theorem, write $K_i \in \mathbb{F}$ for the base field of X_i ; $\Delta_i^{\Sigma} \stackrel{\text{def}}{=} \operatorname{Ker}(\Pi_i^{\Sigma} \twoheadrightarrow G_{K_i})$. Let (for i = 1, 2) $H_i \subseteq \Delta_i^{\Sigma}$

be an open subgroup such that $\phi(H_1) = H_2$. Then does the natural isomorphism (induced by ϕ)

 $H^{1}(G_{K_{1}}, H_{1}^{ab} \otimes \mathbb{Z}_{p}) \xrightarrow{\sim} H^{1}(G_{K_{2}}, H_{2}^{ab} \otimes \mathbb{Z}_{p})$ <u>preserve</u> " $H_{f}^{1} \subseteq H^{1}$ "?

Put another way, does the resulting isomorphism $G_{K_1} \xrightarrow{\sim} G_{K_2}$ preserve Hodge-Tate decompositions of Galois modules which are known to be Hodge-Tate for both G_{K_1}, G_{K_2} ? 16

<u>Remarks</u>:

• The question may (easily) be answered in the affirmative when the Jacobians of the coverings determined by the H_i are <u>ordinary</u>.

 \cdot This question seems to be <u>interesting as a</u> <u>question in *p*-adic Hodge theory</u>, independent of anabelian geometry.